skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Yuzhou"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Traditional cancer rate estimations are often limited in spatial resolutions and lack considerations of environmental factors. Satellite imagery has become a vital data source for monitoring diverse urban environments, supporting applications across environmental, socio-demographic, and public health domains. However, while deep learning (DL) tools, particularly convolutional neural networks, have demonstrated strong performance in extracting features from high-resolution imagery, their reliance on local spatial cues often limits their ability to capture complex, non-local, and higher-order structural information. To overcome this limitation, we propose a novel LLM-based multi-agent coordination system for satellite image analysis, which integrates visual and contextual reasoning through a simplicial contrastive learning framework (Agent- SNN). Our Agent-SNN contains two augmented superpixel-based graphs and maximizes mutual information between their latent simplicial complex representations, thereby enabling the system to learn both local and global topological features. The LLM-based agents generate structured prompts that guide the alignment of these representations across modalities. Experiments with satellite imagery of Los Angeles and San Diego demonstrate that Agent-SNN achieves signi cant improvements over state-of-the-art baselines in regional cancer prevalence estimation tasks. 
    more » « less
    Free, publicly-accessible full text available November 6, 2026
  2. Free, publicly-accessible full text available June 15, 2026
  3. Free, publicly-accessible full text available May 22, 2026
  4. Free, publicly-accessible full text available March 27, 2026
  5. Pre-training has emerged as a dominant paradigm in graph representation learning to address data scarcity and generalization challenges. The majority of existing methods primarily focus on refining fine-tuning and prompting techniques to extract information from pre-trained models. However, the effectiveness of these approaches is contingent upon the quality of the pre-trained knowledge (i.e., latent representations). Inspired by the recent success in topological representation learning, we propose a novel pre-training strategy to capture and learn topological information of graphs. The key to the success of our strategy is to pre-train expressive Graph Neural Networks (GNNs) at the levels of individual nodes while accounting for the key topological characteristics of a graph so that GNNs become sufficiently powerful to effectively encode input graph information. The proposed model is designed to be seamlessly integrated with various downstream graph representation learning tasks. 
    more » « less
    Free, publicly-accessible full text available April 6, 2026
  6. Each year wildfires result in billions of dollars in property damage. Being one of the major natural hazards, wildfires nowadays are also a global affair whose negative impact is particularly devastating in developing countries. As wildfires are expected to become more frequent and severe, more accurate models to predict wildfires are vital to mitigating risks and developing more informed decision-making. Artificial intelligence (AI) has a potential to enhance wildfire risk analytics on multiple fronts. For example, deep learning (DL) has been successfully used to classify active fires, burned scars, smoke plumes and to track the spread of active wildfires. Since wildfire spread tends to exhibit highly complex spatio-temporal dependencies which often cannot be accurately described with conventional Euclideanbased approaches, we postulate that the tools of topological and geometric deep learning, specifically designed for non-Euclidean objects such as manifolds and graphs, may offer a more competitive solution. We validate the proposed methodology to predict wildfire occurrences in Greece and several regions of Africa. Our results indicate that the Firecast Zigzag Convolutional Network (F-ZCN) outperforms the current baseline methods for wildfire prediction and opens a path for more accurate wildfire risk analytics, even in scenarios of limited and noisy data records. 
    more » « less
    Free, publicly-accessible full text available December 15, 2025
  7. Learning time-evolving objects such as multivariate time series and dynamic networks requires the development of novel knowledge representation mechanisms and neural network architectures, which allow for capturing implicit time-dependent information contained in the data. Such information is typically not directly observed but plays a key role in the learning task performance. In turn, lack of time dimension in knowledge encoding mechanisms for time-dependent data leads to frequent model updates, poor learning performance, and, as a result, subpar decision-making. Here we propose a new approach to a time-aware knowledge representation mechanism that notably focuses on implicit time-dependent topological information along multiple geometric dimensions. In particular, we propose a new approach, named Temporal MultiPersistence (TMP), which produces multidimensional topological fingerprints of the data by using the existing single parameter topological summaries. The main idea behind TMP is to merge the two newest directions in topological representation learning, that is, multi-persistence which simultaneously describes data shape evolution along multiple key parameters, and zigzag persistence to enable us to extract the most salient data shape information over time. We derive theoretical guarantees of TMP vectorizations and show its utility, in application to forecasting on benchmark traffic flow, Ethereum blockchain, and electrocardiogram datasets, demonstrating the competitive performance, especially, in scenarios of limited data records. In addition, our TMP method improves the computational efficiency of the state-of-the-art multipersistence summaries up to 59.5 times. 
    more » « less
  8. Wooldridge, Michael (Ed.)
    Learning time-evolving objects such as multivariate time series and dynamic networks requires the development of novel knowledge representation mechanisms and neural network architectures, which allow for capturing implicit timedependent information contained in the data. Such information is typically not directly observed but plays a key role in the learning task performance. In turn, lack of time dimension in knowledge encoding mechanisms for time-dependent data leads to frequent model updates, poor learning performance, and, as a result, subpar decision-making. Here we propose a new approach to a time-aware knowledge representation mechanism that notably focuses on implicit timedependent topological information along multiple geometric dimensions. In particular, we propose a new approach, named Temporal MultiPersistence (TMP), which produces multidimensional topological fingerprints of the data by using the existing single parameter topological summaries. The main idea behind TMP is to merge the two newest directions in topological representation learning, that is, multi-persistence which simultaneously describes data shape evolution along multiple key parameters, and zigzag persistence to enable us to extract the most salient data shape information over time.We derive theoretical guarantees of TMP vectorizations and show its utility, in application to forecasting on benchmark traffic flow, Ethereum blockchain, and electrocardiogram datasets, demonstrating the competitive performance, especially, in scenarios of limited data records. In addition, our TMP method improves the computational efficiency of the state-of-the-art multipersistence summaries up to 59.5 times. 
    more » « less